Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Antibiotics (Basel) ; 12(2)2023 Feb 12.
Article in English | MEDLINE | ID: covidwho-2266793

ABSTRACT

BACKGROUND: Lower respiratory tract infections (LRTIs) in primary care are a promising target for antibiotic stewardship. A clinical trial in Switzerland showed a large decrease in antibiotic prescriptions with procalcitonin guidance (cut-off < 0.25 µg/L) compared with usual care. However, one-third of patients with low procalcitonin at baseline received antibiotics by day 28. AIM: To explore the factors associated with the overruling of initial procalcitonin guidance. DESIGN AND SETTING: Secondary analysis of a cluster randomized trial in which patients with an LRTI were included. METHOD: Using the characteristics of patients, their disease, and general practitioners (GPs), we conducted a multivariate logistic regression, adjusted for clustering. RESULTS: Ninety-five out of 301 (32%) patients with low procalcitonin received antibiotics by day 28. Factors associated with an overruling of procalcitonin guidance were: a history of chest pain (adjusted OR [aOR] 1.81, 95% confidence interval 1.03-3.17); a prescription of chest X-ray by the GP (aOR 4.65, 2.32-9.34); a C-reactive protein measured retrospectively above 100 mg/L (aOR 7.48, 2.34-23.93, reference ≤ 20 mg/L); the location of the GP practice in an urban setting (aOR 2.27, 1.18-4.37); and the GP's number of years of experience (aOR per year 1.05, 1.01-1.09). CONCLUSIONS: Overruling of procalcitonin guidance was associated with GPs' socio-demographic characteristics, pointing to the general behavioral problem of overprescription by physicians. Continuous medical education and communication training might support the successful implementation of procalcitonin point-of-care tests aimed at antibiotic stewardship.

2.
Eur Respir J ; 2022 Sep 14.
Article in English | MEDLINE | ID: covidwho-2029683

ABSTRACT

BACKGROUND: Patients who present to an emergency department with respiratory symptoms are often conservatively triaged in favour of hospitalization. We sought to determine if an inflammatory biomarker panel that identifies the host response better predicts hospitalization in order to improve the precision of clinical decision-making in the emergency department. PATIENTS AND METHODS: From April 2020 to March 2021, plasma samples of 641 patients with symptoms of respiratory illness were collected from emergency departments in an international multicentre study: Canada (n=310), Italy (n=131), and Brazil (n=200). Patients were followed prospectively for 28 days. Subgroup analysis was conducted on confirmed COVID-19 patients (n=245). An inflammatory profile was determined using a rapid, 50-minute, biomarker panel: Rapid Acute Lung Injury Diagnostic (RALI-Dx), which measures IL-6, IL-8, IL-10, sTNFR1, and sTREM1. RESULTS: RALI-Dx biomarkers were significantly elevated in patients who required hospitalization across all three sites. A machine learning algorithm that was applied to predict hospitalization using RALI-Dx biomarkers had an area under the receiver operating characteristic curve of 76±6% (Canada), 84±4% (Italy), and 86±3% (Brazil). Model performance in COVID-19 patients was 82±3% and 87±7% for patients with a confirmed pneumonia diagnosis. CONCLUSIONS: The rapid diagnostic biomarker panel accurately identified the need for inpatient care in patients presenting with respiratory symptoms, including COVID-19. The RALI-Dx test is broadly and easily applicable across many jurisdictions and represents an important diagnostic adjunct to advance emergency department decision-making protocols.

3.
BMJ Open ; 12(8): e061301, 2022 08 29.
Article in English | MEDLINE | ID: covidwho-2020051

ABSTRACT

INTRODUCTION: Presently, there are few population-level strategies to address SARS-CoV-2 infection except preventive measures such as vaccination. Micronutrient deficiency, particularly vitamin D and zinc deficiency, has been associated with dysregulated host responses, and may play an important role in COVID-19. METHODS AND ANALYSIS: We have designed a 2×2 factorial, randomised, double-blind, multi-centre placebo-controlled trial to evaluate the effect of vitamin D and zinc on COVID-19 outcomes in Maharashtra, India. COVID-19 positive individuals are recruited from hospitals in Mumbai and Pune. Participants are provided (1) vitamin D3 bolus (180 000 IU) maintained by daily dose of 2000 IU and/or (2) zinc gluconate (40 mg daily), versus placebo for 8 weeks. Participants undergo a detailed assessment at baseline and at 8 weeks, and are monitored daily in hospital or every 3 days after leaving the hospital to assess symptoms and other clinical measures. A final follow-up telephone call occurs 12 weeks post-enrolment to assess long-term outcomes. The primary outcome of the study is to time to recovery, defined as time to resolution of all of fever, cough and shortness of breath. Secondary outcomes include: duration of hospital stay, all-cause mortality, necessity of assisted ventilation, change in blood biomarker levels and individual symptoms duration. Participant recruitment commenced on April 2021. ETHICS AND DISSEMINATION: Ethical approval was obtained from institutional ethical committees of all participating institutions. The study findings will be presented in peer-reviewed medical journals. TRIAL REGISTRATION NUMBERS: NCT04641195, CTRI/2021/04/032593, HMSC (GOI)-2021-0060.


Subject(s)
COVID-19 , Dietary Supplements , Humans , India/epidemiology , Multicenter Studies as Topic , Randomized Controlled Trials as Topic , SARS-CoV-2 , Treatment Outcome , Vitamin D/therapeutic use , Zinc/therapeutic use
4.
EBioMedicine ; 78: 103982, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1783293

ABSTRACT

BACKGROUND: Endothelial cell (EC) activation, endotheliitis, vascular permeability, and thrombosis have been observed in patients with severe coronavirus disease 2019 (COVID-19), indicating that the vasculature is affected during the acute stages of SARS-CoV-2 infection. It remains unknown whether circulating vascular markers are sufficient to predict clinical outcomes, are unique to COVID-19, and if vascular permeability can be therapeutically targeted. METHODS: Prospectively evaluating the prevalence of circulating inflammatory, cardiac, and EC activation markers as well as developing a microRNA atlas in 241 unvaccinated patients with suspected SARS-CoV-2 infection allowed for prognostic value assessment using a Random Forest model machine learning approach. Subsequent ex vivo experiments assessed EC permeability responses to patient plasma and were used to uncover modulated gene regulatory networks from which rational therapeutic design was inferred. FINDINGS: Multiple inflammatory and EC activation biomarkers were associated with mortality in COVID-19 patients and in severity-matched SARS-CoV-2-negative patients, while dysregulation of specific microRNAs at presentation was specific for poor COVID-19-related outcomes and revealed disease-relevant pathways. Integrating the datasets using a machine learning approach further enhanced clinical risk prediction for in-hospital mortality. Exposure of ECs to COVID-19 patient plasma resulted in severity-specific gene expression responses and EC barrier dysfunction, which was ameliorated using angiopoietin-1 mimetic or recombinant Slit2-N. INTERPRETATION: Integration of multi-omics data identified microRNA and vascular biomarkers prognostic of in-hospital mortality in COVID-19 patients and revealed that vascular stabilizing therapies should be explored as a treatment for endothelial dysfunction in COVID-19, and other severe diseases where endothelial dysfunction has a central role in pathogenesis. FUNDING: This work was directly supported by grant funding from the Ted Rogers Center for Heart Research, Toronto, Ontario, Canada and the Peter Munk Cardiac Center, Toronto, Ontario, Canada.


Subject(s)
COVID-19 , MicroRNAs , Vascular Diseases , COVID-19/diagnosis , COVID-19/mortality , Capillary Permeability , Humans , MicroRNAs/metabolism , SARS-CoV-2 , Vascular Diseases/virology
6.
J Allergy Clin Immunol ; 147(1): 99-106.e4, 2021 01.
Article in English | MEDLINE | ID: covidwho-849714

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic has led to surges of patients presenting to emergency departments (EDs) and potentially overwhelming health systems. OBJECTIVE: We sought to assess the predictive accuracy of host biomarkers at clinical presentation to the ED for adverse outcome. METHODS: Prospective observational study of PCR-confirmed COVID-19 patients in the ED of a Swiss hospital. Concentrations of inflammatory and endothelial dysfunction biomarkers were determined at clinical presentation. We evaluated the accuracy of clinical signs and these biomarkers in predicting 30-day intubation/mortality, and oxygen requirement by calculating the area under the receiver-operating characteristic curve and by classification and regression tree analysis. RESULTS: Of 76 included patients with COVID-19, 24 were outpatients or hospitalized without oxygen requirement, 35 hospitalized with oxygen requirement, and 17 intubated/died. We found that soluble triggering receptor expressed on myeloid cells had the best prognostic accuracy for 30-day intubation/mortality (area under the receiver-operating characteristic curve, 0.86; 95% CI, 0.77-0.95) and IL-6 measured at presentation to the ED had the best accuracy for 30-day oxygen requirement (area under the receiver-operating characteristic curve, 0.84; 95% CI, 0.74-0.94). An algorithm based on respiratory rate and sTREM-1 predicted 30-day intubation/mortality with 94% sensitivity and 0.1 negative likelihood ratio. An IL-6-based algorithm had 98% sensitivity and 0.04 negative likelihood ratio for 30-day oxygen requirement. CONCLUSIONS: sTREM-1 and IL-6 concentrations in COVID-19 in the ED have good predictive accuracy for intubation/mortality and oxygen requirement. sTREM-1- and IL-6-based algorithms are highly sensitive to identify patients with adverse outcome and could serve as early triage tools.


Subject(s)
Algorithms , COVID-19/blood , Emergency Service, Hospital , Interleukin-6/blood , SARS-CoV-2/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/blood , Adult , Aged , Aged, 80 and over , Humans , Middle Aged , Prospective Studies , Risk Assessment , Triage
7.
Trials ; 21(1): 647, 2020 Jul 14.
Article in English | MEDLINE | ID: covidwho-647104

ABSTRACT

OBJECTIVES: Primary Objective: To determine if pre-exposure prophylaxis (PrEP) with 400mg hydroxychloroquine (HCQ), taken orally once daily reduces microbiologically confirmed COVID-19 among front line health care workers at high risk for SARS-CoV-2 exposure. Secondary Objectives: To compare the following between study arms: adverse events; symptomatic COVID-19; duration of symptomatic COVID-19; days hospitalized attributed to COVID-19; respiratory failure attributable to COVID-19 requiring i) non-invasive ventilation or ii) intubation/mechanical ventilation; mortality attributed to COVID-19, number of days unable to work attributed to COVID-19, seroconversion (COVID-19 negative to COVID-19 positive over the study period); ability of participant plasma to neutralize SARS-CoV-2 virus in vitro; To describe short-term psychological distress associated with risk of COVID-19 exposure at 1, 60, 120 days of the study. To explore laboratory markers within participants with confirmed COVID-19: including circulating markers of host immune and endothelial activation in participant plasma and their correlation with disease severity and outcome TRIAL DESIGN: The HEROS study is a two-arm, parallel-group, individually randomized (1:1 allocation ratio), placebo controlled, participant and investigator-blinded, multi-site superiority trial of oral HCQ 400 mg taken once daily for 90 days as PrEP to prevent COVID-19 in health care workers at high risk of SARS-CoV-2 exposure. At 90 days, there is an open label extension wherein all participants are offered a one-month course of HCQ 400mg once daily for PrEP of COVID-19. PARTICIPANTS: Frontline HCWs aged 18 years of age or older, at high risk of SARS-CoV-2 exposure (including staff of emergency departments, intensive care units, intubation teams, COVID-wards, and staff deployed to Long Term Care facilities) of five academic hospitals in downtown Toronto, Canada. Exclusion criteria include: currently pregnant, planning to become pregnant during the study period, and/or breast feeding; known hypersensitivity/allergy to hydroxychloroquine or to 4-aminoquinoline compounds; current use of hydroxychloroquine; known prolonged QT syndrome and/or baseline resting ECG with QTc>450 ms and/or concomitant medications which simultaneously may prolong the QTc that cannot be temporarily suspended/replaced; known pre-existing retinopathy, G6PD deficiency, porphyria, liver disease including cirrhosis, encephalopathy, hepatitis or alcoholism, diabetes on oral hypoglycemics or insulin, or renal insufficiency/failure; disclosure of self-administered use of hydroxychloroquine or chloroquine within 12 weeks prior to study; confirmed symptomatic COVID-19 at time of enrollment. INTERVENTION AND COMPARATOR: Intervention: hydroxychloroquine, 400mg (2 tablets) orally per day. Comparator: placebo, two tablets visually identical to the intervention, orally per day MAIN OUTCOMES: The primary outcome is microbiologically confirmed COVID-19 (i.e. SARS-CoV-2 infection). This is a composite endpoint which includes positive results from any validated SARS-CoV-2 diagnostic assay including detection of viral RNA, and/or seroconversion. Participants will be assessed at baseline, and then undergo monthly follow-up at day 30, 60, and 90, 120. At each visit, participants will provide an oropharyngeal sample, blood sample, and will undergo electrocardiogram monitoring of the QTc interval. Secondary outcome measures include: adverse events; symptom duration of COVID-19; days of hospitalization attributed to COVID-19; respiratory failure requiring ventilator support attributed to COVID-19; mortality attributed to COVID-19; total days off work attributed to COVID-19; seropositivity (reactive serology by day 120); and short term psychological impact of exposure to SARS-CoV-2 at day 1, 60, 120 days using the K10, a validated measure of non-specific psychological distress. RANDOMISATION: Within each site, participants will be individually randomized to either the intervention arm with HCQ or the placebo arm using a fixed 1:1 allocation ratio using an interactive web-based response system to ensure concealment of allocation. Randomization schedules will be computer-generated and blocked using variable block sizes. BLINDING (MASKING): All participants, research coordinators, technicians, clinicians and investigators will be blinded to the participant allocation group. Numbers to be randomised (sample size) N=988, randomised into two groups of 494 patients. TRIAL STATUS: This summary describes protocol version No. 1.6, May 15, 2020. Recruitment is ongoing - started April 20, 2020 and anticipated end date is July 30, 2021 TRIAL REGISTRATION: ISRCTN.com Identifier: ISRCTN14326006, registered April 14, 2020. FULL PROTOCOL: The full protocol is attached as an additional file, accessible from the Trials website (Additional file 1). In the interest in expediting dissemination of this material, the familiar formatting has been eliminated; this Letter serves as a summary of the key elements of the full protocol. The study protocol has been reported in accordance with the Standard Protocol Items: Recommendations for Clinical Interventional Trials (SPIRIT) guidelines (Additional file 2).


Subject(s)
Betacoronavirus , Coronavirus Infections/prevention & control , Health Personnel , Hydroxychloroquine/therapeutic use , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pre-Exposure Prophylaxis , Randomized Controlled Trials as Topic , Adolescent , Adult , COVID-19 , Humans , Outcome Assessment, Health Care , SARS-CoV-2 , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL